निम्न में से क्या द्विघात समीकरण है? (a) x2 -79= x2 +9x+1 (b) 12×2 -7=0 (c) 3×2 +11x+14=x(3x+5x) (d) -x2

Question

निम्न में से क्या द्विघात समीकरण है?
(a) x2
-79= x2
+9x+1 (b) 12×2
-7=0
(c) 3×2
+11x+14=x(3x+5x) (d) -x2
+11x-18=0

in progress 0
Claire 5 months 2022-01-06T17:21:48+00:00 2 Answers 0 views 0

Answers ( )

    0
    2022-01-06T17:23:26+00:00

    Answer:

    a)Givenequation:x2−79=x2+9x+1

    /* subtract bothsides of the equation by x², we get */

    \implies x^{2} – 79 – x^{2} = x^{2}+9x+1 – x^{2}⟹x2−79−x2=x2+9x+1−x2

    \implies -79 = 9x + 1⟹−79=9x+1

    \blue { ( Degree \: of \: the\: equation \:is \: 1 )}(Degreeoftheequationis1)

    So, it \:is \:a \: Linear \: equationSo,itisaLinearequation

    b) Given \: 12x^{2} – 7 = 0b)Given12x2−7=0

    \blue { ( Degree \: of \: the\: equation \:is \: 2 )}(Degreeoftheequationis2)

    \green {So, it \:is \:a \: Quadratic\: equation.}So,itisaQuadraticequation.

    c) Given \: equation : 3x^{2}+11x+14=x(3x+5x)c)Givenequation:3×2+11x+14=x(3x+5x)

    \implies 3x^{2}+11x+14= x\times 8x⟹3×2+11x+14=x×8x

    \implies 3x^{2}+10x+14= 8x^{2}⟹3×2+10x+14=8×2

    \implies 3x^{2}+10x+14-8x^{2}=0⟹3×2+10x+14−8×2=0

    \implies -5x^{2}+10x+14=0⟹−5×2+10x+14=0

    \blue { ( Degree \: of \: the\: equation \:is \: 2 )}(Degreeoftheequationis2)

    \green {So, it \:is \:a \: Quadratic\: equation.}So,itisaQuadraticequation.

    d) Given \: equation : -x^{2}+11x-18 = 0d)Givenequation:−x2+11x−18=0

    \blue { ( Degree \: of \: the\: equation \:is \: 2 )}(Degreeoftheequationis2)

    \green {So, it \:is \:a \: Quadratic\: equation.}So,itisaQuadraticequation.

    •••♪

    Step-by-step explanation:

    MARK me as BRAINLIST and FOLLOW me

    0
    2022-01-06T17:23:46+00:00

     a) Given \: equation : x^{2} - 79 = x^{2}+9x+1

    /* subtract bothsides of the equation by , we get */

     \implies x^{2} - 79 - x^{2}  = x^{2}+9x+1 - x^{2}

     \implies -79 = 9x + 1

     \blue { ( Degree \: of \: the\: equation \:is \: 1 )}

     So, it \:is \:a \: Linear \: equation

     b) Given \: 12x^{2} - 7 = 0

     \blue { ( Degree \: of \: the\: equation \:is \: 2 )}

     \green {So, it \:is \:a \: Quadratic\: equation.}

     c) Given \: equation : 3x^{2}+11x+14=x(3x+5x)

     \implies 3x^{2}+11x+14= x\times 8x

     \implies 3x^{2}+10x+14= 8x^{2}

     \implies 3x^{2}+10x+14-8x^{2}=0

     \implies -5x^{2}+10x+14=0

     \blue { ( Degree \: of \: the\: equation \:is \: 2 )}

     \green {So, it \:is \:a \: Quadratic\: equation.}

     d) Given \: equation : -x^{2}+11x-18 = 0

     \blue { ( Degree \: of \: the\: equation \:is \: 2 )}

     \green {So, it \:is \:a \: Quadratic\: equation.}

    •••♪

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )