sum of number is 95 . if one exceeds the other by 15 find the number Question sum of number is 95 . if one exceeds the other by 15 find the number in progress 0 Math Ximena 1 month 2021-10-22T00:48:46+00:00 2021-10-22T00:48:46+00:00 2 Answers 0 views 0

## Answers ( )

Answer:–★Thetwonumbersare:40and55★Concept:–Here the concept of linear equations in one variable is used,where

byusingconstantterms,wefindthevalueofvariables.★Solution:–•

Letonenumberbe‘x’.Then according to the question,

•

Othernumber=x+15Nowitsgiventhatsumofbothnumbers=95So,

## ✒

x+x+15=95## ✒ 2x + 15 = 95

Now transposing, 15 to that side, we get,

## ✒ 2x = 95 – 15

## ✒ 2x = 80

## ✒

## ✒

x=40Hence,40.• Now another number is given by :

## ▶

x+15=40+15=55Hence,x+1555Soboththenumbersare:40and55.★Moretoknow:–•

LinearEquationsinonevarible=Thesetypeofequationsareformedbyusingonevaribleinequationwhichiffoundoutbythehelpofconstants.•GraphicSolution=Ifwegoondrawingthegraphofthisproblem,weseethatthelineofgraphintersectsx–axisat40andanothervalueifrepresentedbyy,intersectsitat55.•WordProblems=Whilesolvingthewordproblem,wecangothrougheachlineforformingequation.Andonce,equationisformed,wecansolveit.★Verificationofthisproblem:–Ifweneedtoverify,this,wecansimpleapplythevalueswegotintotheequationweformed.So, the equation is,

✏

x+x+15=95✏

40+55=95✏

95=95Clearly,

LHS=RHSHence, our answer is correct.

Thusverified.Answer:Step-by-step explanation:→ Here we have to find the two numbers.

→ Let us assume the first number as x

→ By given,

Second number = First number + 15

→ Hence,

Second number = x + 15

→ Also by given,

First number + Second number = 95

→ Hence,

x + x + 15 = 95

→ Simplifying,

2x + 15 = 95

2x = 95 – 15

2x = 80

x = 80/2

x = 40

→ Hence the first number is 40

→ Now we know that,

Second number = x + 15

→ Substitute the value of x

Second number = 40 + 15

Second number = 55

→ Hence the second number is 55

→ Second number = First number + 15

55 = 40 + 15

55 = 55

→ First number + Second number = 95

55 + 45 = 95

95 = 95

→ Hence verified.