a+b+c=6 and a^2+b^2+c^2=14 then find the value of ab +bc+ca

Question

a+b+c=6 and a^2+b^2+c^2=14 then find the value of ab +bc+ca

in progress 0
Ximena 3 weeks 2021-10-01T14:28:05+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-10-01T14:29:31+00:00

    Step-by-step explanation:

    ( a + b + c) = 6

    a² + b² + c² = 14

    ab + bc + ca = ?

    Let‘s use (a + b + c )² Property

    So + + = + + + 2ab + 2bc + 2ca

    (a + b + c)² = 6²

    => (a² + b² + c²) + 2ab + 2bc + 2ac = 36

    => 14 + 2( ab + bc + ca) = 36

    => 2( ab + bc + ca) = 36 – 14

    => 2( ab + bc + ca) = 22

    => ab + bc + ca = 22/2

    => ab + bc + ca = 11

    Therefore, ab + bc + ca = 11

    Hope this helps.....

    0
    2021-10-01T14:29:38+00:00

    Answer:

    your answer attached in the photo

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )