A bowl contains three coins, two of which are normal coins and one coin has head on both sides and is biased. A coin is picked at random and

Question

A bowl contains three coins, two of which are normal coins and one coin has head on both sides and is biased. A coin is picked at random and
tossed. What is the probability of getting head?

in progress 0
Everleigh 3 weeks 2021-10-05T06:53:10+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-10-05T06:54:35+00:00

    Step-by-step explanation:

    A bowl contains three coins, two of which are normal coins and one coin has head on both sides and is biased. A coin is picked at random and

    tossed. What is the probability of getting head?

    0
    2021-10-05T06:54:49+00:00

    Answer: Your answer to part (a) is incorrect. If you pull out a random coin and flip, you have six scenarios:

    Head 1 of 2-headed coin

    Head 2 of 2-headed coin

    Head of fair coin

    Tail of fair coin

    Tail 1 of 2-tailed coin

    Tail 2 of 2-tailed coin

    3 of those are “heads”, and 2 of those 3 correspond to the 2 headed coin. Thus, the answer to part (a) is 23

    Part (b): Probability of getting double headed * getting head from that double headed + Probability of getting fair * getting head from that fair coin

    23⋅1+13⋅12=56

    Part (c): Now you have 3⋅2⋅2=12 possiblities; check all of them and see which of the ones involving two heads involve the double headed coin.

    You can also look at Bayes’s Theorem; it covers problems like this one.

    Step-by-step explanation:

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )