Analyse the product:- a(a+b)- b(b+c) =?​

Question

Analyse the product:-

a(a+b)- b(b+c) =?​

in progress 0
Elliana 1 month 2021-08-22T23:57:55+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-08-22T23:59:17+00:00

    Answer:

    a2 – b2 = (a – b)(a + b)

    (a+b)2 = a2 + 2ab + b2

    a2 + b2 = (a + b)2 – 2ab

    (a – b)2 = a2 – 2ab + b2

    (a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ca

    (a – b – c)2 = a2 + b2 + c2 – 2ab + 2bc – 2ca

    (a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)

    (a – b)3 = a3 – 3a2b + 3ab2 – b3

    a3 – b3 = (a – b)(a2 + ab + b2)

    a3 + b3 = (a + b)(a2 – ab + b2)

    (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

    (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4

    a4 – b4 = (a – b)(a + b)(a2 + b2)

    a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)

    If n is a natural number an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)

    If n is even (n = 2k), an + bn = (a – b)(an-1 + an-2b +…+ bn-2a + bn-1)

    If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +an-3b2…- bn-2a + bn-1)

    (a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….)

    Laws of Exponents (am)(an) = am+n ; (ab)m = ambm ; (am)n = amn

    Fractional Exponents a0 = 1 ; aman=am−n ; am = 1a−m ; a−m = 1am

    0
    2021-08-22T23:59:31+00:00

    Answer:

    a(a + b) – b(b + c)

    a² + ab -b² – bc

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )