At what rate percent will 2000rs amount to 2315.25rs in 3 years at compound interest? no spamming plz ans. fast.​

Question

At what rate percent will 2000rs amount to 2315.25rs in 3 years at compound interest?
no spamming
plz ans. fast.​

in progress 0
Madeline 1 month 2021-08-12T10:55:58+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-08-12T10:57:22+00:00

    Answer:

    hlo

    …………………..

    0
    2021-08-12T10:57:46+00:00

    S O L U T I O N :

    \underline{\bf{Given\::}}

    • Principal, (P) = Rs.2000
    • Amount, (A) = Rs.2315.25
    • Time, (n) = 3 years .

    \underline{\bf{Explanation\::}}

    Using formula of the compounded annually;

    \boxed{\bf{Amount = Principal\bigg(1+\frac{R}{100} \bigg)^{n}}}

    A/q

    \mapsto\tt{2315.25 =2000\bigg(1+\dfrac{R}{100} \bigg)^{3}}

    \mapsto\tt{\dfrac{2315.25}{2000} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

    \mapsto\tt{\dfrac{2315.25 \times 100}{2000\times 100} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

    \mapsto\tt{\dfrac{231525}{200000} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

    \mapsto\tt{\cancel{\dfrac{231525}{200000}} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

    \mapsto\tt{\cancel{\dfrac{46305}{40000}} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

    \mapsto\tt{\dfrac{9261}{8000} =\bigg(1+\dfrac{R}{100} \bigg)^{3}}

    \mapsto\tt{3\sqrt{\dfrac{9261}{8000} }=1+\dfrac{R}{100} }

    \mapsto\tt{\dfrac{21}{20} =1+\dfrac{R}{100} }

    \mapsto\tt{\dfrac{21}{20}-1 =\dfrac{R}{100} }

    \mapsto\tt{\dfrac{21-20}{20} =\dfrac{R}{100} }

    \mapsto\tt{\dfrac{1}{20} =\dfrac{R}{100} }

    \mapsto\tt{20R= 100\:\:\underbrace{\sf{cross-multiplication}}}

    \mapsto\tt{R = \cancel{100/20}}

    \mapsto\bf{R = 5\:\%}

    Thus,

    The rate of the compound Interest will be 5% .

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )