CosA – SinA+1/cosA+ SinA-1 = CosecA + cot A ​

Question

CosA – SinA+1/cosA+ SinA-1 = CosecA + cot A ​

in progress 0
Lydia 1 week 2021-09-07T07:45:16+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-09-07T07:46:28+00:00

     \frac{ \cos(A) -  \sin(A)  +  1 }{ \cos(A) +  \sin(A) - 1  }

    Devide and multiply by

     \sin(A)

     =  \frac{ \sin(A)( \cos(A) -  \sin(A) + 1)   }{ \sin(A)( \cos(A)  +  \sin(A) - 1)  }

     \frac{ \sin(A) \cos(A)  -  { \sin }^{2}(A) +  \sin(A)  }{ \sin(A)( \cos(A) +  \sin(A) - 1)  }

     =  \frac{1 +  \cos(A) }{ \sin(A) }

     \frac{1}{ \sin(A) }  +  \frac{ \cos(A) }{ \sin(A) }

     \cosec(A)  +  \cot(A)

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )