Table of Contents. Preface... xiii


 Sharleen Malone
 2 years ago
 Views:
Transcription
1 Preface... xiii PART I. ELEMENTS IN FLUID MECHANICS... 1 Chapter 1. Local Equations of Fluid Mechanics Forces, stress tensor, and pressure Navier Stokes equations in Cartesian coordinates The plane Poiseuille flow Navier Stokes equations in cylindrical coordinates: Poiseuille flow in a circular cylindrical pipe Plane Couette flow The boundary layer concept Solutions of Navier Stokes equations where a gravity field is present, hydrostatic pressure Buoyancy force Some conclusions on the solutions of Navier Stokes equations Chapter 2. Global Theorems of Fluid Mechanics Euler equations in an intrinsic coordinate system Bernoulli s theorem Pressure variation in a direction normal to a streamline Momentum theorem Evaluating friction for a steadystate flow in a straight pipe Pressure drop in a sudden expansion (Borda calculation) Using the momentum theorem in the presence of gravity Kinetic energy balance and dissipation Application exercises Exercise 2.I: Force exerted on a bend... 47
2 vi Fluid Mechanics for Chemical Engineering Exercise 2.II: Emptying a tank Exercise 2.III: Pressure drop in a sudden expansion and heating Exercise 2.IV: Streaming flow on an inclined plane Exercise 2.V: Impact of a jet on a sloping plate Exercise 2.VI: Operation of a hydroejector Exercise 2.VII: Bypass flow Chapter 3. Dimensional Analysis Principle of dimensional analysis, Vaschy Buckingham theorem Example the oscillating pendulum Dimensional study of Navier Stokes equations Similarity theory An application example: fall velocity of a spherical particle in a viscous fluid at rest Application of the Vaschy Buckingham theorem Forces exerted on the ball The hydrodynamic force opposing the particle s movement relative to the fluid Fall velocity for a small Reynolds number Fall velocity for a large Reynolds number Application exercises Exercise 3.I: Time of residence and chemical reaction in a stirred reactor Exercise 3.II: Boundary layer on an oscillating plate Exercise 3.III: Head capacity curve of a centrifugal pump Chapter 4. SteadyState Hydraulic Circuits Operating point of a hydraulic circuit Steadystate flows in straight pipes: regular head loss Turbulence in a pipe and velocity profile of the flow Singular head losses Notions on cavitation Application exercises Exercise 4.I: Regular head loss measurement and flow rate in a pipe Exercise 4.II: Head loss and cavitation in a hydraulic circuit Exercise 4.III: Ventilation of a road tunnel Exercise 4.IV: Sizing a network of heating pipes Exercise 4.V: Head, flow rate, and output of a hydroelectric power plant Bibliography... 93
3 vii Chapter 5. Pumps Centrifugal pumps Operating principle Similarity laws and head/capacity curves Implementation of a centrifugal pump Classification of turbo pumps and axial pumps Positive displacement pumps Chapter 6. Transient Flows in Hydraulic Circuits: Water Hammers Sound propagation in a rigid pipe Overpressures associated with a water hammer: characteristic time of a hydraulic circuit Linear elasticity of a solid body: sound propagation in an elastic pipe Water hammer prevention devices Exercise Chapter 7. Notions of Rheometry Rheology Strain, strain rate, solids and fluids A rheology experiment: behavior of a material subjected to shear The circular cylindrical rheometer (or Couette rheometer) Application exercises Exercise 7.I: Rheometry and flow of a Bingham fluid in a pipe Exercise 7.II: Cone/plate rheometer PART II. MIXING AND CHEMICAL REACTIONS Chapter 8. Large Scales in Turbulence: Turbulent Diffusion Dispersion Introduction Concept of average in the turbulent sense, steady turbulence, and homogeneous turbulence Average velocity and RMS turbulent velocity Length scale of turbulence: integral scale Turbulent flux of a scalar quantity: averaged diffusion equation Modeling turbulent fluxes using the mixing length model Turbulent dispersion The kε model
4 viii Fluid Mechanics for Chemical Engineering 8.9. Appendix: solution of a diffusion equation in cylindrical coordinates Application exercises Exercise 8.I: Dispersion of fluid streaks introduced into a pipe by a network of capillary tubes Exercise 8.II: Grid turbulence and kε modeling Chapter 9. Hydrodynamics and Residence Time Distribution Stirring Turbulence and residence time distribution Notion of residence time distribution Modeling RTD via a turbulent diffusion approach: cases of a tubular reactor with axial dispersion and of a CSTR Stirring Mechanical characterization of a stirrer Stirring and mixing time Emulsions and foams Appendix: interfaces and the notion of surface tension Interface between two nonmiscible fluids and surface tension Equilibrium in the contact line between three phases, Jurin s law Chapter 10. Micromixing and Macromixing Introduction Characterization of the mixture: segregation index The dynamics of mixing Homogenization of a scalar field by molecular diffusion: micromixing Diffusion and chemical reactions Macromixing, micromixing, and chemical reactions Experimental demonstration of the micromixing process Chapter 11. Small Scales in Turbulence Notion of signal processing, expansion of a time signal into Fourier series Turbulent energy spectrum Kolmogorov s theory The Kolmogorov scale Application to macromixing, micromixing and chemical reaction
5 ix Application exercises Exercise 11.I: Mixing in a continuous stirred tank reactor Exercise 11.II: Mixing and combustion Exercise 11.III: Laminar and turbulent diffusion flames Chapter 12. Micromixing Models Introduction CD model Principle CD model in a closed reactor without reaction CD model in an open reactor without reaction CD model in the presence of a chemical reaction Model of interaction by exchange with the mean Principle IEM model without a chemical reaction IEM model with a chemical reaction Conclusion Application exercise Exercise 12.I: Implementation of the IEM model for a slow or fast chemical reaction PART III. MECHANICAL SEPARATION Chapter 13. Physical Description of a Particulate Medium Dispersed Within a Fluid Introduction Solid particles Geometrical characterization of a particle Grain size distribution in a granular medium Determination of a solid s density using a pycnometer Concentrations Formation of clusters, coagulation, and flocculation Fluid particles Mass balance of a mechanical separation process Chapter 14. Flows in Porous Media Consolidated porous media; nonconsolidated porous media, and geometrical characterization Darcy s law Examples of application of Darcy s law Laboratory permeameters
6 x Fluid Mechanics for Chemical Engineering Membrane resistance to filtration Deadend filtration and crossflow filtration Modeling Darcy s law through an analogy with the flow inside a network of capillary tubes Modeling permeability, KozenyCarman formula Ergun s relation Draining by pressing Draining the liquid Mechanical equilibrium of forces applied on the solid skeleton and on the liquid Force transmission in the structure Characteristic time of draining by pressing The reverse osmosis process Energetics of membrane separation Application exercises Exercise: Study of a seawater desalination process Chapter 15. Particles Within the Gravity Field Settling of a rigid particle in a fluid at rest Settling of a set of solid particles in a fluid at rest Settling or rising of a fluid particle in a fluid at rest Particles being held in suspension by Brownian motion Particles being held in suspension by turbulence Fluidized beds Flow regimes Mechanical equilibrium in a fluidized bed Fluid flow in a fluidized bed Application exercises Exercise 15.I: Distribution of particles in suspension and grain size sorting resulting from settling Exercise 15.II: Fluidization of a bimodal distribution of particles Chapter 16. Movement of a Solid Particle in a Fluid Flow Notations and hypotheses The Basset, Boussinesq, Oseen, and Tchen equation Movement of a particle subjected to gravity in a fluid at rest Movement of a particle in a steady, unidirectional shear flow Lift force applied to a particle by a unidirectional flow Lift force exerted on a particle in a fluid flow in an infinite medium Lift force exerted on a particle in the vicinity of a wall Centrifugation of a particle in a rotating flow
7 xi Applications to the transport of a particle in a turbulent flow or in a laminar flow Application to laminar flows Application to turbulent flows Chapter 17. Centrifugal Separation Rotating flows, circulation, and velocity curl Some examples of rotating flows Solidbody rotation in a rotating tank Vortex flow Flow in a hydrocyclone The principle of centrifugal separation Centrifuge decanters Discontinuous centrifuge decanters Continuous centrifuge decanters Centrifugal separators Centrifugal filtration Hydrocyclones Separation by a hydrocyclone of particles that are denser than the fluid Separation by a hydrocyclone of particles less dense than the fluid Energetics of centrifugal separation Application exercise Exercise 17.I: Grain size sorting in a hydrocyclone Chapter 18. Notions on Granular Materials Static friction: Coulomb s law of friction Noncohesive granular materials: Angle of repose, angle of internal friction Microscopic approach to a granular material Macroscopic modeling of the equilibrium of a granular material in a silo Flow of a granular material: example of an hourglass Physical Properties of Common Fluids Index
Contents. I Introduction 1. Preface. xiii
Contents Preface xiii I Introduction 1 1 Continuous matter 3 1.1 Molecules................................ 4 1.2 The continuum approximation.................... 6 1.3 Newtonian mechanics.........................
More informationENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids
CHAPTER 1 Properties of Fluids ENGINEERING FLUID MECHANICS 1.1 Introduction 1.2 Development of Fluid Mechanics 1.3 Units of Measurement (SI units) 1.4 Mass, Density, Specific Weight, Specific Volume, Specific
More informationChemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017
Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017 Objective: Text: To introduce the basic concepts of fluid mechanics and heat transfer necessary for solution of engineering
More informationB.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I
Department of Chemical Engineering B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I LP: CH 16304 Rev. No: 00
More informationDetailed Outline, M E 320 Fluid Flow, Spring Semester 2015
Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015 I. Introduction (Chapters 1 and 2) A. What is Fluid Mechanics? 1. What is a fluid? 2. What is mechanics? B. Classification of Fluid Flows 1. Viscous
More information1 FLUIDS AND THEIR PROPERTIES
FLUID MECHANICS CONTENTS CHAPTER DESCRIPTION PAGE NO 1 FLUIDS AND THEIR PROPERTIES PART A NOTES 1.1 Introduction 1.2 Fluids 1.3 Newton s Law of Viscosity 1.4 The Continuum Concept of a Fluid 1.5 Types
More informationEngineering Fluid Mechanics
Engineering Fluid Mechanics Eighth Edition Clayton T. Crowe WASHINGTON STATE UNIVERSITY, PULLMAN Donald F. Elger UNIVERSITY OF IDAHO, MOSCOW John A. Roberson WASHINGTON STATE UNIVERSITY, PULLMAN WILEY
More informationdynamics of f luids in porous media
dynamics of f luids in porous media Jacob Bear Department of Civil Engineering Technion Israel Institute of Technology, Haifa DOVER PUBLICATIONS, INC. New York Contents Preface xvii CHAPTER 1 Introduction
More informationFluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition
Fluid Dynamics: Theory, Computation, and Numerical Simulation Second Edition C. Pozrikidis m Springer Contents Preface v 1 Introduction to Kinematics 1 1.1 Fluids and solids 1 1.2 Fluid parcels and flow
More informationBiotransport: Principles
Robert J. Roselli Kenneth R. Diller Biotransport: Principles and Applications 4 i Springer Contents Part I Fundamentals of How People Learn (HPL) 1 Introduction to HPL Methodology 3 1.1 Introduction 3
More informationAPPLIED FLUID DYNAMICS HANDBOOK
APPLIED FLUID DYNAMICS HANDBOOK ROBERT D. BLEVINS H imhnisdia ttodisdiule Darmstadt Fachbereich Mechanik 'rw.nr.. [VNR1 VAN NOSTRAND REINHOLD COMPANY ' ' New York Contents Preface / v 1. Definitions /
More information1. Introduction, tensors, kinematics
1. Introduction, tensors, kinematics Content: Introduction to fluids, Cartesian tensors, vector algebra using tensor notation, operators in tensor form, Eulerian and Lagrangian description of scalar and
More informationClass XI Physics Syllabus One Paper Three Hours Max Marks: 70
Class XI Physics Syllabus 2013 One Paper Three Hours Max Marks: 70 Class XI Weightage Unit I Physical World & Measurement 03 Unit II Kinematics 10 Unit III Laws of Motion 10 Unit IV Work, Energy & Power
More informationName of Course: B.Tech. (Chemical Technology/Leather Technology)
Name of : B.Tech. (Chemical Technology/Leather Technology) Harcourt Butler Technological Institute, Kanpur Study and [Effective from the Session 2011] B. Tech. (Chemical Technology/Leather Technology)
More informationCLASS SCHEDULE 2013 FALL
CLASS SCHEDULE 2013 FALL Class # or Lab # 1 Date Aug 26 2 28 Important Concepts (Section # in Text Reading, Lecture note) Examples/Lab Activities Definition fluid; continuum hypothesis; fluid properties
More informationHEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY. C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York
HEAT TRANSFER THERMAL MANAGEMENT OF ELECTRONICS YOUNES SHABANY C\ CRC Press W / Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business
More informationFundamentals of Fluid Mechanics
Sixth Edition Fundamentals of Fluid Mechanics International Student Version BRUCE R. MUNSON DONALD F. YOUNG Department of Aerospace Engineering and Engineering Mechanics THEODORE H. OKIISHI Department
More informationGATE PSU. Chemical Engineering. Fluid Mechanics. For. The Gate Coach 28, Jia Sarai, Near IIT Hauzkhas, New Delhi 16 (+91) ,
For GATE PSU Chemical Engineering Fluid Mechanics GATE Syllabus Fluid statics, Newtonian and nonnewtonian fluids, Bernoulli equation, Macroscopic friction factors, energy balance, dimensional analysis,
More informationS.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100
Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum
More informationFLUID FLOW FOR THE PRACTICING CHEMICAL ENGINEER
FLUID FLOW FOR THE PRACTICING CHEMICAL ENGINEER J. Patrick Abulencia Louis Theodore WILEY A JOHN WILEY & SONS, INC., PUBLICATION PREFACE INTRODUCTION xvii xix I INTRODUCTION TO FLUID FLOW 1 II History
More informationFluid Mechanics. du dy
FLUID MECHANICS Technical English  I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's
More informationDIVIDED SYLLABUS ( )  CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL
DIVIDED SYLLABUS (201516 )  CLASS XI PHYSICS (CODE 042) COURSE STRUCTURE APRIL Unit I: Physical World and Measurement Physics Need for measurement: Units of measurement; systems of units; SI units, fundamental
More informationMECHANICAL PROPERTIES OF FLUIDS:
Important Definitions: MECHANICAL PROPERTIES OF FLUIDS: Fluid: A substance that can flow is called Fluid Both liquids and gases are fluids Pressure: The normal force acting per unit area of a surface is
More informationPHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.
PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion
More informationSCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN
SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN Course code : CH0317 Course Title : Momentum Transfer Semester : V Course Time : July Nov 2011 Required Text
More informationContents. Preface XIII. 1 General Introduction 1 References 6
VII Contents Preface XIII 1 General Introduction 1 References 6 2 Interparticle Interactions and Their Combination 7 2.1 HardSphere Interaction 7 2.2 Soft or Electrostatic Interaction 7 2.3 Steric Interaction
More information150A Review Session 2/13/2014 Fluid Statics. Pressure acts in all directions, normal to the surrounding surfaces
Fluid Statics Pressure acts in all directions, normal to the surrounding surfaces or Whenever a pressure difference is the driving force, use gauge pressure o Bernoulli equation o Momentum balance with
More informationWilliam В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.
William В. Brower, Jr. A PRIMER IN FLUID MECHANICS Dynamics of Flows in One Space Dimension CRC Press Boca Raton London New York Washington, D.C. Table of Contents Chapter 1 Fluid Properties Kinetic Theory
More informationPart A: 1 pts each, 10 pts total, no partial credit.
Part A: 1 pts each, 10 pts total, no partial credit. 1) (Correct: 1 pt/ Wrong: 3 pts). The sum of static, dynamic, and hydrostatic pressures is constant when flow is steady, irrotational, incompressible,
More informationContents. Microfluidics  Jens Ducrée Physics: Laminar and Turbulent Flow 1
Contents 1. Introduction 2. Fluids 3. Physics of Microfluidic Systems 4. Microfabrication Technologies 5. Flow Control 6. Micropumps 7. Sensors 8. InkJet Technology 9. Liquid Handling 10.Microarrays 11.Microreactors
More informationME3560 Tentative Schedule Spring 2019
ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to
More informationFE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)
Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.
More informationQ1 Give answers to all of the following questions (5 marks each):
FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored
More informationME3560 Tentative Schedule Fall 2018
ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read
More informationChapter 10. Solids and Fluids
Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the
More informationDetailed Outline, M E 521: Foundations of Fluid Mechanics I
Detailed Outline, M E 521: Foundations of Fluid Mechanics I I. Introduction and Review A. Notation 1. Vectors 2. Secondorder tensors 3. Volume vs. velocity 4. Del operator B. Chapter 1: Review of Basic
More informationUNIT I FLUID PROPERTIES AND STATICS
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : Fluid Mechanics (16CE106) Year & Sem: IIB.Tech & ISem Course & Branch:
More information(2.1) Is often expressed using a dimensionless drag coefficient:
1. Introduction Multiphase materials occur in many fields of natural and engineering science, industry, and daily life. Biological materials such as blood or cell suspensions, pharmaceutical or food products,
More informationCE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART  A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density
More informationBiological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems
Biological Process Engineering An Analogical Approach to Fluid Flow, Heat Transfer, and Mass Transfer Applied to Biological Systems Arthur T. Johnson, PhD, PE Biological Resources Engineering Department
More informationNPTEL Quiz Hydraulics
Introduction NPTEL Quiz Hydraulics 1. An ideal fluid is a. One which obeys Newton s law of viscosity b. Frictionless and incompressible c. Very viscous d. Frictionless and compressible 2. The unit of kinematic
More informationD.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for
D.A.V. PUBLIC SCHOOL, UPPAL S SOUTHEND, SECTOR 49, GURUGRAM CLASS XI (PHYSICS) Academic plan for 20172018 UNIT NAME OF UNIT WEIGHTAGE 1. 2. 3. Physical World and Measurement Kinemetics Laws of Motion
More informationCONVECTION HEAT TRANSFER
CONVECTION HEAT TRANSFER THIRD EDITION Adrian Bejan J. A. Jones Professor of Mechanical Engineering Duke University Durham, North Carolina WILEY JOHN WILEY & SONS, INC. CONTENTS Preface Preface to the
More informationFluid Dynamics Exercises and questions for the course
Fluid Dynamics Exercises and questions for the course January 15, 2014 A two dimensional flow field characterised by the following velocity components in polar coordinates is called a free vortex: u r
More informationFLUID MECHANICS AND HEAT TRANSFER
AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER AN INTRODUCTION TO FLUID MECHANICS AND HEAT TRANSFER WITH APPLICATIONS IN CHEMICAL & MECHANICAL PROCESS ENGINEERING BY J. M. KAY AND R. M. NEDDERMAN
More informationINSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.
Course Name Course Code Class Branch INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad  00 0 AERONAUTICAL ENGINEERING : Mechanics of Fluids : A00 : III B. Tech Year : 0 0 Course Coordinator
More informationHYDRAULIC CONTROL SYSTEMS
HYDRAULIC CONTROL SYSTEMS Noah D. Manring Mechanical and Aerospace Engineering Department University of MissouriColumbia WILEY John Wiley & Sons, Inc. vii Preface Introduction xiii XV FUNDAMENTALS 1 Fluid
More informationSubjectwise Tests. Tests will be activated at 6:00 pm on scheduled day
Subjectwise Tests Tests will be activated at 6:00 pm on scheduled day Test No Test01 Test02 SM1 Economic development in India since independence with emphasis on Andhra Pradesh + Science & Technology
More informationPrinciples of Convective Heat Transfer
Massoud Kaviany Principles of Convective Heat Transfer Second Edition With 378 Figures Springer Contents Series Preface Preface to the Second Edition Preface to the First Edition Acknowledgments vii ix
More informationCONVECTIVE HEAT TRANSFER
CONVECTIVE HEAT TRANSFER Mohammad Goharkhah Department of Mechanical Engineering, Sahand Unversity of Technology, Tabriz, Iran CHAPTER 3 LAMINAR BOUNDARY LAYER FLOW LAMINAR BOUNDARY LAYER FLOW Boundary
More informationPREFACE. Julian C. Smith Peter Harriott. xvii
PREFACE This sixth edition of the text on the unit operations of chemical engineering has been extensively revised and updated, with much new material and considerable condensation of some sections. Its
More informationEddy viscosity. AdOc 4060/5060 Spring 2013 Chris Jenkins. Turbulence (video 1hr):
AdOc 4060/5060 Spring 2013 Chris Jenkins Eddy viscosity Turbulence (video 1hr): http://cosee.umaine.edu/programs/webinars/turbulence/?cfid=8452711&cftoken=36780601 Part B Surface wind stress Wind stress
More informationINTRODUCTION TO CATALYTIC COMBUSTION
INTRODUCTION TO CATALYTIC COMBUSTION R.E. Hayes Professor of Chemical Engineering Department of Chemical and Materials Engineering University of Alberta, Canada and S.T. Kolaczkowski Professor of Chemical
More informationFriction Factors and Drag Coefficients
Levicky 1 Friction Factors and Drag Coefficients Several equations that we have seen have included terms to represent dissipation of energy due to the viscous nature of fluid flow. For example, in the
More informationFigure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m
1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)
More informationBACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)
No. of Printed Pages : 6 BME028 BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) TermEnd Examination December, 2011 00792 BME028 : FLUID MECHANICS Time : 3 hours
More informationChapter 1 Fluid Characteristics
Chapter 1 Fluid Characteristics 1.1 Introduction 1.1.1 Phases Solid increasing increasing spacing and intermolecular liquid latitude of cohesive Fluid gas (vapor) molecular force plasma motion 1.1.2 Fluidity
More informationAGITATION AND AERATION
AGITATION AND AERATION Although in many aerobic cultures, gas sparging provides the method for both mixing and aeration  it is important that these two aspects of fermenter design be considered separately.
More informationTable of Contents. Preface...xvii. Part 1. Level
Preface...xvii Part 1. Level 1... 1 Chapter 1. The Basics of Linear Elastic Behavior... 3 1.1. Cohesion forces... 4 1.2. The notion of stress... 6 1.2.1. Definition... 6 1.2.2. Graphical representation...
More informationTable of Contents. Foreword... xiii. Preface... xv
Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...
More informationCOURSE CODE : 3072 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE
COURSE TITLE : FLUID MECHANICS COURSE CODE : 307 COURSE CATEGORY : B PERIODS/ WEEK : 5 PERIODS/ SEMESTER : 75 CREDIT : 5 TIME SCHEDULE MODULE TOPIC PERIOD 1 Properties of Fluids 0 Fluid Friction and Flow
More informationC ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127
C ONTENTS Preface xviii Nomenclature xxvi CHAPTER ONE BASICS OF HEAT TRANSFER 1 11 Thermodynamics and Heat Transfer 2 Application Areas of Heat Transfer 3 Historical Background 3 12 Engineering Heat
More informationINTERNAL GRAVITY WAVES
INTERNAL GRAVITY WAVES B. R. Sutherland Departments of Physics and of Earth&Atmospheric Sciences University of Alberta Contents Preface List of Tables vii xi 1 Stratified Fluids and Waves 1 1.1 Introduction
More informationPrinciples of Convection
Principles of Convection Point Conduction & convection are similar both require the presence of a material medium. But convection requires the presence of fluid motion. Heat transfer through the: Solid
More informationExperiment To determine the coefficient of impact for vanes. Experiment To determine the coefficient of discharge of an orifice meter.
SUBJECT: FLUID MECHANICS VIVA QUESTIONS (M.E 4 th SEM) Experiment To determine the coefficient of impact for vanes. Q1. Explain impulse momentum principal. Ans1. Momentum equation is based on Newton s
More informationLesson 6 Review of fundamentals: Fluid flow
Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass
More informationApproximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.
Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface
More informationD.R. Rector, M.L. Stewart and A.P. Poloski Pacific Northwest National Laboratory P.O. Box 999, Richland, WA
Modeling of Sediment Bed Behavior for Critical Velocity in Horizontal Piping 9263 D.R. Rector, M.L. Stewart and A.P. Poloski Pacific Northwest National Laboratory P.O. Box 999, Richland, WA ABSTRACT A
More informationFoundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS
Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological
More informationContents. Preface XI Symbols and Abbreviations XIII. 1 Introduction 1
V Contents Preface XI Symbols and Abbreviations XIII 1 Introduction 1 2 Van der Waals Forces 5 2.1 Van der Waals Forces Between Molecules 5 2.1.1 Coulomb Interaction 5 2.1.2 Monopole Dipole Interaction
More informationChemical Reactor flnolysis
Introduction to Chemical Reactor flnolysis SECOND EDITION R.E. Hayes J.P. Mmbaga ^ ^ T..,«,,.«M.iirti,im.' TECHNISCHE INFORMATIONSBIBLIOTHEK UNWERSITATSBIBLIOTHEK HANNOVER i ii ii 1 J /0\ CRC Press ycf*
More informationM E 320 Supplementary Material Pralav Shetty
M E 320 Supplementary Material Pralav Shetty Note: In order to view the demonstrations below, you must first download CDF player to your PC/Mac/Linux. Link for CDF player http://www.wolfram.com/cdfplayer/
More informationCENG 501 Examination Problem: Estimation of Viscosity with a Falling  Cylinder Viscometer
CENG 501 Examination Problem: Estimation of Viscosity with a Falling  Cylinder Viscometer You are assigned to design a fallingcylinder viscometer to measure the viscosity of Newtonian liquids. A schematic
More informationRHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko
RHEOLOGY Principles, Measurements, and Applications I 560815'79~5 1994 VCH Publishers. Inc. New York Part I. CONSTITUTIVE RELATIONS 1 1 l Elastic Solid 5 1.1 Introduction 5 1.2 The Stress Tensor 8 1.2.1
More informationPROPERTIES OF BULK MATTER
PROPERTIES OF BULK MATTER CONCEPTUAL PROBLEMS Q01 What flows faster than honey. Why? Ans According to poiseuille s formula, the volume V of a liquid flowing per second through a horizontal narrow tube
More informationConvection. forced convection when the flow is caused by external means, such as by a fan, a pump, or atmospheric winds.
Convection The convection heat transfer mode is comprised of two mechanisms. In addition to energy transfer due to random molecular motion (diffusion), energy is also transferred by the bulk, or macroscopic,
More informationThe Physics of Fluids and Plasmas
The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the
More informationFig.81 Scheme of the fluidization column
8 Fluidization Lenka Schreiberová, Martin Kohout I Basic relations and definitions Fluidization is a process where the liquid flows in opposite direction the gravitation and creates a suspension together
More informationChapter 9. Solids and Fluids. States of Matter. Solid. Liquid. Gas
Chapter 9 States of Matter Solids and Fluids Solid Liquid Gas Plasma Solids Have definite volume Have definite shape Molecules are held in specific locations By electrical forces Vibrate about equilibrium
More informationChapter 1: Basic Concepts
What is a fluid? A fluid is a substance in the gaseous or liquid form Distinction between solid and fluid? Solid: can resist an applied shear by deforming. Stress is proportional to strain Fluid: deforms
More informationFundamentals of Aerodynamics
Fundamentals of Aerodynamics Fourth Edition John D. Anderson, Jr. Curator of Aerodynamics National Air and Space Museum Smithsonian Institution and Professor Emeritus University of Maryland Me Graw Hill
More informationCFD in COMSOL Multiphysics
CFD in COMSOL Multiphysics Mats Nigam Copyright 2016 COMSOL. Any of the images, text, and equations here may be copied and modified for your own internal use. All trademarks are the property of their respective
More informations and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I
Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum
More informationMECHANICAL PROPERTIES OF FLUIDS
CHAPTER10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure
More informationCHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution
CONTENTS CHAPTER 1. VECTOR ANALYSIS 1. Scalars and Vectors 2. Vector Algebra 3. The Cartesian Coordinate System 4. Vector Cartesian Coordinate System 5. The Vector Field 6. The Dot Product 7. The Cross
More informationEngineering. Green Chemical. S. Suresh and S. Sundaramoorthy. and Chemical Processes. An Introduction to Catalysis, Kinetics, CRC Press
I i Green Chemical Engineering An Introduction to Catalysis, Kinetics, and Chemical Processes S. Suresh and S. Sundaramoorthy CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an
More informationFUNDAMENTALS OF AERODYNAMICS
*A \ FUNDAMENTALS OF AERODYNAMICS Second Edition John D. Anderson, Jr. Professor of Aerospace Engineering University of Maryland H ' McGrawHill, Inc. New York St. Louis San Francisco Auckland Bogota Caracas
More informationMonth. March APRIL. The Orchid School Baner Weekly Syllabus Overview Std : XI Subject : Physics. Activities/ FAs Planned.
The Orchid School Baner Weekly Syllabus Overview 20152016 Std : XI Subject : Physics Month Lesson / Topic Expected Learning Objective Activities/ FAs Planned Remark March Physical World and Measurement
More informationDarcy's Law. Laboratory 2 HWR 531/431
Darcy's Law Laboratory HWR 531/4311 Introduction In 1856, Henry Darcy, a French hydraulic engineer, published a report in which he described a series of experiments he had performed in an attempt to quantify
More informationEngineering and. Tapio Salmi Abo Akademi AboTurku, Finland. JyriPekka Mikkola. Umea University, Umea, Sweden. Johan Warna.
Chemical Reaction Engineering and Reactor Technology Tapio Salmi Abo Akademi AboTurku, Finland JyriPekka Mikkola Umea University, Umea, Sweden Johan Warna Abo Akademi AboTurku, Finland CRC Press is
More informationFluid Mechanics. Spring 2009
Instructor: Dr. YangCheng Shih Department of Energy and Refrigerating AirConditioning Engineering National Taipei University of Technology Spring 2009 Chapter 1 Introduction 11 General Remarks 12 Scope
More informationAMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE. PhD Entrance Examination  Syllabus
AMRITA VISHWA VIDYAPEETHAM DEPARTMENT OF CHEMICAL ENGINEERING AND MATERIALS SCIENCE PhD Entrance Examination  Syllabus The research being carried out in the department of Chemical Engineering & Materials
More information11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an
Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior
More informationContents. Preface... xvii
Contents Preface... xvii CHAPTER 1 Idealized Flow Machines...1 1.1 Conservation Equations... 1 1.1.1 Conservation of mass... 2 1.1.2 Conservation of momentum... 3 1.1.3 Conservation of energy... 3 1.2
More informationATMOSPHERIC AND OCEANIC FLUID DYNAMICS
ATMOSPHERIC AND OCEANIC FLUID DYNAMICS Fundamentals and Largescale Circulation G E O F F R E Y K. V A L L I S Princeton University, New Jersey CAMBRIDGE UNIVERSITY PRESS An asterisk indicates more advanced
More informationTutorial 10. Boundary layer theory
Tutorial 10 Boundary layer theory 1. If the velocity distribution law in a laminar boundary layer over a flat plate is assumes to be of the form, determine the velocity distribution law. At y = 0, u= 0
More informationAn Introduction to Engineering Fluid Mechanics
An Introduction to Engineering Fluid Mechanics Other Macmillan titles of related interest Jonas M. K. Dake: Essentials of Engineering Hydrology L. Huisman: Groundwater Recovery L. M. MilneThomson: Theoretical
More informationPaper No. : 04 Paper Title: Unit Operations in Food Processing Module 18: Circulation of fluids through porous bed
Paper No. : 04 Paper Title: Unit Operations in Food Processing Module 18: Circulation of fluids through porous bed 18.1 Introduction A typical packed bed is a cylindrical column that is filled with a
More informationBoundaryLayer Theory
Hermann Schlichting Klaus Gersten BoundaryLayer Theory With contributions from Egon Krause and Herbert Oertel Jr. Translated by Katherine Mayes 8th Revised and Enlarged Edition With 287 Figures and 22
More informationArterial Macrocirculatory Hemodynamics
Arterial Macrocirculatory Hemodynamics 莊漢聲助理教授 Prof. Han Sheng Chuang 9/20/2012 1 Arterial Macrocirculatory Hemodynamics Terminology: Hemodynamics, meaning literally "blood movement" is the study of blood
More information