find the number of sides of a regular polygon if its interior angle is(4\pi /5)^c

Question

find the number of sides of a regular polygon if its interior angle is(4\pi /5)^c

in progress 0
Anna 1 month 2021-08-23T06:41:23+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-08-23T06:43:19+00:00

    Answer:

    \sf{The \ number \ of \ sides \ of \ a \ regular \ polygon \ is \ 10.}

    Given:

    \sf{Interior \ angle \ of \ a \ regular \ polygon=(\dfrac{4\pi}{5})^{c}}

    To find:

    \sf{Number \ sides \ of \ a \ regular \ polynomial.}

    Solution:

    \sf{Interior \ angle =(\dfrac{4\pi}{5})^{c}} \\ \\ \sf{\therefore{Interior \ angle=(\dfrac{4\pi}{5}\times\dfrac{180}{\pi})^\circ}} \\ \\ \sf{\therefore{Interior \ angle=144^\circ}} \\ \\ \sf{Interior \ angle + Exterior \ angle=180^\circ} \\ \\ \sf{\therefore{Exterior \ angle=180^\circ-144^\circ}} \\ \\ \sf{\therefore{Exterior \ angle=36^\circ}} \\ \\ \\  \sf{Note: \ [ \ For \ regular \ polygon,} \\ \\ \sf{Number \ of \ sides=\dfrac{360}{Exterior \ angle} \ ]} \\ \\ \\ \sf{\therefore{Number \ of \ sides=\dfrac{360}{36}}} \\ \\ \sf{\therefore{Number \ of \ sides=10}} \\ \\ \purple{\tt{The \ number \ of \ sides \ of \ regular \ polygon \ is \ 10.}}

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )