## Find the sum of the zero of the quadratic polynomiay x²+7x+12​

Question

Find the sum of the zero of the
polynomiay x²+7x+12​

in progress 0
1 month 2021-08-13T17:31:43+00:00 2 Answers 0 views 0

Step-by-step explanation:

Let f(x)=

{12=3*4}

{7=3+4}

zeros = -3, -4

α= -3 ,β= -4

f(x)=

=

comparing with

so , a=1 , b=7 , c=12

now finding sum of zeros

Sum of zero =

α +β =

-3+(-4)=

-7=-7

product of zeros =

α*β=

(-3)(-4)=

12=12

## plzzzz….. mark my answer as brainliest

Given: The polynomial is x² + 7x + 12

To find : The sum and product of zeroes of the polynomial.

### solution:–

First of all we have to find out the zeroes of the p(x).

here ,

⇒ a = 1

⇒b = 7

⇒c = 12

⇒p( x ) = x² + 7x + 12

⇒p ( x ) = 0

⇒ x² + 7x + 12 = 0

⇒ x² + ( 4 + 3 ) x + 12 =0

⇒x² + 4x + 3x + 12 = 0

⇒x ( x + 4 ) + 3 ( x + 4 ) = 0

⇒( x + 4 ) ( x + 3 ) = 0

so , Either

↦( x + 4 ) = 0

↦ x = -4

or,

↦( x + 3 ) = 0

↦x = -3

. • . The zeroes are -4 , -3

Now ,

let, the Zeroes be α ,β

so, α = 4 , β = 3

= -4 + ( -3)

= -4 -3

= -7

=

= -7

=

=

= -4 × -3

= 12

=

= 12

=

=

Note: