if a+b+c=5,a^+b^+c^=29, then find the value of ab +bc+ca​

Question

if a+b+c=5,a^+b^+c^=29, then find the value of ab +bc+ca​

in progress 0
Natalia 2 weeks 2021-09-10T10:26:19+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-09-10T10:27:49+00:00

    Answer:

    Step-by-step explanation:


    Step-by-step explanation:


    Given that,


    a+b-c = 5 and a^2+b^2+c^2 = 29


    Using the formula


    (a+b+c)^2 = a^2+b^2+c^2+2(ab+bc+ca)


    =>(a+b+(-c)^2= a^2+b^2+c^2+2(ab+bc+ca)


    =>(a+b-c)^2= a^2+b^2+c^2+2(ab-bc-ca)


    =>5^2= 29+2(ab-bc-ca)


    =>25= 29+2(ab-bc-ca)


    =>ab-bc-ca= 25-29/2


    =>ab-bc-ca= -4/2


    =>ab-bc-ca= -2


    Ans: -2

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )