if minus 1 and minus 2 are the zeros of the cubic polynomial x cube minus 2 x square plus ax plus b find the value of a and b​

Question

if minus 1 and minus 2 are the zeros of the cubic polynomial x cube minus 2 x square plus ax plus b find the value of a and b​

in progress 0
Adalynn 4 weeks 2021-08-20T17:27:17+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-08-20T17:28:46+00:00

    Answer:

    (a) Let p(x) = x3 + ax2 + bx + c

    Let a, p and y be the zeroes of the given cubic polynomial p(x).

    ∴  α = -1                                        [given]

    and p(−1) = 0

    ⇒ (-1)3 + a(-1)2 + b(-1) + c = 0

    ⇒ -1 + a- b + c = 0

    ⇒ c = 1 -a + b                                                             …(i)

    We know that,

    αβγ = -c

    ⇒ (-1)βγ = −c                                                                             [∴α = -1]

    ⇒ βγ = c

    ⇒ βγ = 1 -a + b                                                                [from Eq. (i)]

    Hence, product of the other two roots is 1 -a + b.

    Alternate Method

    Since, -1 is one of the zeroes of the cubic polynomial f(x) = x2 + ax2 + bx + c i.e., (x + 1) is a factor of f{x).

    Now, using division algorithm,

    ⇒x3 + ax2 + bx +c = (x + 1) x {x2 + (a – 1)x + (b – a + 1)> + (c – b + a -1)

    ⇒x3 + ax2 + bx + (b – a + 1) = (x + 1) {x2 + (a – 1)x + (b -a+ 1)}  

    Let a and p be the other two zeroes of the given polynomial, then  

    Step-by-step explanation:

    0
    2021-08-20T17:28:56+00:00

    Step-by-step explanation:

    HOPE IT HELPS YOU...........

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )