If sin θ − cos θ = 0 (0°≤θ≤90°) and sec θ + cosec θ=x, then find x.

Question

If sin θ − cos θ = 0 (0°≤θ≤90°) and sec θ + cosec θ=x, then find x.

in progress 0
Kennedy 1 month 2021-08-16T18:34:08+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-08-16T18:35:17+00:00

    Step-by-step explanation:

    sinA – cosA = 0

    => sinA = cosA

    => sinA = sin( 90 – A )

    => A = 90 – A

    => A + A = 90

    => 2A = 90°

    => A = 45°

    Now ,

    x = sec A + cosec A

    = sec 45° + cosec 45°

    = √2 + √2

    = 2√2

    if it helps you

    Mark as brainlest answer

    0
    2021-08-16T18:35:56+00:00

    Answer:

    Trigonometric equations

    Step-by-step explanation:

    sin Ф + cos Ф = \sqrt{2}

    2

    cos Ф

    \frac{1}{\sqrt{2} }

    2

    1

    sin Ф + \frac{1}{\sqrt{2} }

    2

    1

    cos Ф = cos Ф

    sin\frac{\pi }{4}

    4

    π

    sin Ф + cos \frac{\pi }{4}

    4

    π

    cos Ф = cos Ф

    cos ( \frac{\pi }{4}

    4

    π

    – Ф) = cos Ф

    ( \frac{\pi }{4}

    4

    π

    – Ф) = Ф

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )