if sinAcosA = 6/13 find the value of CosA​

Question

if sinAcosA = 6/13 find the value of CosA​

in progress 0
Madeline 1 week 2021-09-14T18:11:13+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-09-14T18:12:57+00:00

    sinAcosA = 6/13

      \frac{ \sin(2a) }{2}  =  \frac{6}{13}  \\  \sin(2a)  = \frac{12}{13}  \\  \cos(2a)  = \frac{25}{13 }  \\ 2 \cos^{2} (a) - 1 =  \frac{25 }{13}   \\  \cos^{2} (a) =   \frac{19}{13}  \\  \cos(a)  =  \sqrt{ \frac{19}{13} }

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )