if two adjacent angles of a parallelogram are (5x-5) and (10x+35), then the ratio of this angle is​

Question

if two adjacent angles of a parallelogram are (5x-5) and (10x+35), then the ratio of this angle is​

in progress 0
Adeline 1 month 2021-10-22T01:45:21+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-10-22T01:46:58+00:00

    \huge\rm\underline\pink{GIVEN:}

    • \large\rm{Two\:adjacent\:angles\:of\:parallelogram\:are\:(5x-5)\:and\:(10x+35)}

    \huge\rm\underline\pink{TO\:FIND:}

    • \large\rm{Ratio\:of\:the\:angles}

    \huge\rm\underline\pink{SOLUTION:}

    \large\rm{Adjacent\:angles\:of\:given\:parallelogram\:are\:(5x-5)\:and\:(10x+35)}

    \large\rm\bold{\boxed{Sum\:of\:two\:adjacent\:angles\:of\:parallelogram\:is\:180°}}

    \large\rm{\implies{5x-5+10x+35\:=\:180°}}

    \large\rm{\implies{15x+30\:=\:180°}}

    \large\rm{\implies{15x\:=\:180°-30°}}

    \large\rm{\implies{15x\:=\:150°}}

    \large\rm{\implies{x\:=\:\frac{150}{15}}}

    \large\rm{\implies{x\:=\:10}}

    \large\rm{\rightarrow{The\:angle\:(5x-5)\:=\:5(10)-5\:=\:45°}}

    \large\rm{\rightarrow{The\:angle\:(10x-35)\:=\:10(10)-35\:=\:65°}}

    \large\rm{\therefore{Ratio\:between\:these\:angles\:=\:45:65\:=\:9:13}}

    0
    2021-10-22T01:47:10+00:00

    Really Dear Renuka your Answers are of high quality

    Thank You for helping

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )