In how many months will rupess1020 amounts to 1037 at 5/2 simple intrest per annum

Question

In how many months will rupess1020 amounts to 1037 at 5/2 simple intrest per annum

in progress 0
Allison 1 week 2021-11-22T00:56:34+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-11-22T00:57:34+00:00

    \blue{\bold{\underline{\underline{Answer:}}}}

    \green{\tt{\therefore{Time=8\:months}}}

    \orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

     \green{\underline \bold{Given :}} \\  \tt:  \implies  Principal(p) = 1020 \: rupees \\  \\ \tt:  \implies Amount(A) = 1037 \: rupees \\  \\  \tt:  \implies Rate\%(r) =  \frac{5}{2} \% \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  Time(t) =?

    • According to given question :

     \bold{As \: we \: know \: that} \\  \tt:  \implies A = p + S.I \\  \\ \tt:  \implies 1037 = 1020 + si \\  \\ \tt:  \implies S.I= 1037 - 1020 \\  \\  \green{\tt:  \implies S.I= 17 \: rupees} \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies S.I =  \frac{p \times r \times t}{100}  \\  \\ \tt:  \implies 17 =  \frac{1020 \times 5 \times t}{2 \times 100}  \\  \\ \tt:  \implies  \frac{17 \times 2 \times 100}{1020 \times 5}  = t \\  \\ \tt:  \implies t =  \frac{3400}{5100}   \times 12 \\  \\  \green{\tt:  \implies t = 8 \: months}

    0
    2021-11-22T00:58:22+00:00

    GIVEN :

    ☞Amount (A) = 1037 rupees

    ☞ Principle (P) = 1020 rupees

    ☞ Rate% (R%) = 5/2

    To FIND:

    ☆Time (t)

    Solution :

    Amount = S.I + sum

    1037 = S.I + 1020

    1037 – 1020 = S.I

    17 = S.I

    So, we got S.I = 17 rupees.

    Then,

    S.I  =  \frac{P  \times R  \times t}{100}

    =>17 =  \frac{1020 \times 5 \times t}{2 \times 100}

    =>17 \times 200 = 5100 \times t

     =>\frac{3400}{5100}  = t

    => \frac{3400}{5100}  \times 12 = t

    =>8 \: months \:  = t

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )