Q.3 Find the quadratic equation whose roots are (6 + √5) and (6-√5)​

Question

Q.3
Find the quadratic equation whose roots are (6 + √5) and
(6-√5)​

in progress 0
Rose 1 month 2021-08-18T15:04:55+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-08-18T15:06:20+00:00

    Answer:

    x^2-12x+31

    Step-by-step explanation:

    late let alpha and beta are the roots of equation

    so

    alpha plus beta is equal to 2 6 plus under root 5 plus six minus under root 5=12

    Alpha Alpha into beta is equal to=31

    0
    2021-08-18T15:06:49+00:00

    Answer:

    Step-by-step explanation:

    x=  6+√5 , 6-√5

    Sum of zeroes of the polynomial  = 6+√5+6-√5

                                                            = 12

    Product of zeroes of the polynomial  =  (6+√5)(6-√5)

                                                                 = 36-5

                                                                  =31

    Formula for quadratic equation=>

    =k[x²-x(sum of zeroes)+(product of zeroes)]   {here k is some constant}

    =k[x²-x(12) + (31)]

    =k[x²-12x+31]

    So , x²-12x+31 is the quaratic equation

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )