## radio of two cylinders are in the ratio 4:3 and their heights are in the ratio 5:6, find the ratio of their curved surfaces.​

Question

radio of two cylinders are in the ratio 4:3 and their heights are in the ratio 5:6, find the ratio of
their curved surfaces.​

in progress 0
4 weeks 2021-11-02T05:59:44+00:00 1 Answer 0 views 0

1. Given :

• Ratio of two cylinders are in the ratio 4:3.
• Their heights are in the ratio 5 : 6.

To find :

• The ratio of their curved surfaces =?

Formula Used :

• Curved surface area of cylinder = 2πrh.

Step-by-step explanation :

Ratio of the first Cylinder, r₁ = 4

Ratio of the second Cylinder, r₂ = 3

Height of the first Cylinder, h₁ = 5

Height of the second Cylinder, h₂ = 6

Curved surface area of the first cylinder, S₁ = 2πr₁h₁.

Curved surface area of the second cylinder, S₂ = 2πr₂h₂ .

According to the question,

S₁/S₂ = 2πr₁h₁/2πr₂h₂

S₁/S₂ = r₁h₁/r₂h₂

S₁/S₂ = 4₁5₁/3₂6₂

S₁/S₂ = 4 × 5/3 × 6

S₁/S₂ = 20/18

S₁/S₂ = 10/9.

Therefore, the ratio of their curved surfaces = 10/9.