sinx + sin²x=1. Prove that cos^12x+3cos^10x+3cos^8x+cos^6=1​

Question

sinx + sin²x=1. Prove that
cos^12x+3cos^10x+3cos^8x+cos^6=1​

in progress 0
Luna 7 months 2021-10-13T18:05:11+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-10-13T18:07:09+00:00

    Step-by-step explanation:

    you can proceed this ,

    sinx + sin^2x =1

    sinx =1 – sin^2x =cos^2x

    now,

    cos^12x+3cos^10x +3cos^8x +cos^6x

    => (cos^4x)^3+3. (cos^4x)^2.cos^2x +3cos^4x.(cos^2x)^2+(cos^2x)^3

    =>(sin^2x)^3+3sin^4x.cos^2x+3sin^2x.cos^4x +(cos^2x)^3

    =>{sin^2x+ cos^2x}^3 = 1^3 =1

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )