solve:  {2x}^{2} + ax - {a}^{2} = 0 by using b²-4ac method​

Question

solve:
 {2x}^{2}  + ax -  {a}^{2}  = 0
by using b²-4ac method​

in progress 0
Samantha 1 month 2021-08-13T07:47:54+00:00 1 Answer 0 views 0

Answers ( )

    0
    2021-08-13T07:49:19+00:00

    Step-by-step explanation:

    Solution:

    eq=2x²+ax-a²

    comparing it with ax²+bx+c =0,we get

    a=2, b=a and c= -a²

    Discriminant

    D=b²-4ac=(a)²-4×2×-a²= a²+8a²=9a²

    D=9a²

    using quadratic formula

    x =  \frac{ - b \pm \sqrt{d} }{2a}

    put the value in this formula

    x =  \frac{ - a \pm \sqrt{9 {a}^{2} } }{2 \times 2 }

    x =  \frac{ - a \pm3a}{4}

    x =  \frac{ - a + 3a}{4}  \: and \:  \frac{ - a - 3a}{4}

    x =  \frac{2a}{4}  \: and \:  \frac{ - 4a}{4}

    value of x =a/2 and -a

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )