sum of first 25 terms of arithmetic sequence 11 22 33 44…​

Question

sum of first 25 terms of arithmetic sequence 11 22 33 44…​

in progress 0
Anna 1 month 2021-08-12T12:36:38+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-08-12T12:38:20+00:00

    HI  BUDDY  HERE  IS  YOUR  ANSWER.

    HOPE  YOU  WILL  LIKE  MY ANSWER.

    SO, PLEASE MARK ME AS BRAINLIEST AND I WOULD BE THANKFUL TO YOU FOR THAT:-):?} : ,)

    Answer:

    Sum of first 25 terms of arithmetic sequence 11 22 33 44…​ is 3575

    Step-by-step explanation:

    Here,

    a₁=11,n=25

    d=a₂-a₁

    d=22-11=11

    We need to find S₂₅ i.e., sum of first 25 terms of arithmetic sequence 11 22 33 44…

    According to the formula,

    S₂₅= n/2[2a+(n-1)d]

    S₂₅= 25/2[(2×11)+(25-1)11]

    S₂₅= 25/2[22+(24)×11]

    S₂₅= 25/2[22+264]

    S₂₅= 25[286] =25×143=3575←ANSWER

                2

                                            THANK  YOU                                      

    0
    2021-08-12T12:38:31+00:00

    Answer:

    Aslo check in digest

    Step-by-step explanation:

    a = 11

    d = 11

    n = 25

    Formula to find sum :

    Sn = n/2[ 2a + ( n 1 )×d ]

    S25 = 25/2[22 + 24×11]

    S25= 25/2 ( 22+ 264)

    S25= 25/2 ( 286)

    S 25 = 3575

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )