If \: \ \textless \ br /\ \textgreater \ x = 1 + \sqrt{2 \: } \: show \: that \: {(x - \frac{1}{x} })^{3} = 8 Pleas

Question

If  \: \  \textless \ br /\  \textgreater \ x = 1 + \sqrt{2 \: } \: show \: that \: {(x - \frac{1}{x} })^{3} = 8
Please answer fast …

in progress 0
Clara 1 month 2021-08-19T09:12:11+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-08-19T09:13:28+00:00

    Answer:

    7999652rggtyi8jg3fipkyxwcg6i9p

    0
    2021-08-19T09:13:47+00:00

    Answer:

    8

    Step-by-step explanation:

    x  = 1+\sqrt{2}

    put the value in equation (x-\frac{1}{x} )^{3}

    (1+\sqrt{2} - \frac{1}{1+\sqrt{2} } )^{3}

    make denominater is rational

    (1+\sqrt{2} - \frac{1-\sqrt{2} }{(1+\sqrt{2})(1-\sqrt{2})  } )^{3}

    (1+\sqrt{2} - \frac{1-\sqrt{2} }{1^{2}-\sqrt{2}^{2} } )^{3}

    (1+\sqrt{2} - \frac{1-\sqrt{2} }{1-2} } )^{3}

    (1+\sqrt{2} - \frac{1-\sqrt{2} }{-1} } )^{3}

    (1+\sqrt{2} +1-\sqrt{2})^{3}

    (2)^{3}

    8

    please mark as brainlist

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )