triangle XYZ, Y =90 degree, Z =60 degree, ZX =12 cm. Find YZ ​

Question

triangle XYZ, Y =90 degree, Z =60 degree, ZX =12 cm. Find YZ

in progress 0
Anna 8 months 2021-10-03T08:45:48+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-10-03T08:47:11+00:00

    Given:

    • ∠Y of triangle XYZ is 90°.
    • ∠Z of triangle XYZ is 60°.
    • Side ZX is 12 cm.

    ⠀⠀⠀⠀⠀⠀

    To find:

    • Side YZ of triangle XYZ.

    ⠀⠀⠀⠀⠀⠀

    Solution:-

    ⠀⠀⠀⠀⠀⠀

     \large \tt  \: cos \: θ =  \frac{Base}{Hypotenuse}

    ⠀⠀⠀⠀⠀⠀

     \implies \tt \: cos \: 60\degree =  \frac{Base}{Hypotenuse}  --(1)\\  \\

    ⠀⠀⠀⠀⠀⠀

    ☆ Base = YZ

    ☆ Hypotenuse = ZX = 12 cm

    ☆ Cos 60° =  \frac{1}{</strong><strong>2</strong><strong>}

    ⠀⠀⠀⠀⠀⠀

    So, Put the values in equation (1)

     \implies \tt \:  \frac{1}{2}  =  \frac{YZ}{12}

    • Cross multiply

     \implies \tt \:  12 = 2 \times YZ

     \implies \tt \:  \frac{12}{2}  = YZ

     \implies \tt \:  6 = YZ

    ⠀⠀⠀⠀⠀⠀

    Therefore, YZ is 6 cm.

    ____________________

    More ratio’s:

     \large \tt \: sin \: θ =  \frac{Perpendicular}{Hypotenuse}

     \large \tt \: tan \: θ =  \frac{Perpendicular}{Base}

     \large \tt \: Cot \: θ =  \frac{Base}{Perpendicular}

     \large \tt \: cosec \: θ =  \frac{Hypotenuse}{Perpendicular}

     \large \tt sec\: θ =  \frac{Hypotenuse}{Base}

    0
    2021-10-03T08:47:34+00:00

    Answer:

    a+b+c+d=180^

    90+60+12+d=180^

    162+d=180^

    d=180^-162

    d=17^

    Step-by-step explanation:

    plz mark me as brainlist and me thank

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )