what r the all properties of transversal​

Question

what r the all properties of transversal​

in progress 0
Vivian 2 weeks 2021-09-13T14:57:19+00:00 2 Answers 0 views 0

Answers ( )

    0
    2021-09-13T14:58:21+00:00

    Answer:

    \huge\boxed{\fcolorbox{red}{Yellow}{Answer}}

    <body bgcolor="black"><font color="red">

    First, if a transversal intersects two lines so that corresponding angles are congruent, then the lines are parallel. Second, if a transversal intersects two lines so that interior angles on the same side of the transversal are supplementary, then the lines are parallel.

    <marquee><svg width="350" height="350" viewBox="0 0 100 100">\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ <path fill="orange" d="M92.71,7.27L92.71,7.27c-9.71-9.69-25.46-9.69-35.18,0L50,14.79l-7.54-7.52C32.75-2.42,17-2.42,7.29,7.27v0 c-9.71,9.69-9.71,25.41,0,35.1L50,85l42.71-42.63C102.43,32.68,102.43,16.96,92.71,7.27z"></path>\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ <animateTransform \ \textless \ br /\ \textgreater \ attributeName="transform" \ \textless \ br /\ \textgreater \ type="scale" \ \textless \ br /\ \textgreater \ values="1; 1.5; 1.25; 1.5; 1.5; 1;" \ \textless \ br /\ \textgreater \ dur="2s" \ \textless \ br /\ \textgreater \ repeatCount="40"> \ \textless \ br /\ \textgreater \ </animateTransform>\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ </svg>

    <marquee behaviour-move> <font color ="red"><h1>❣️☺️ itzquite☺❣️</h1></marquee>

    <marquee> <font color ="green"><h1>✌️♥️ Follow me♥️✌️</marquee>

    ☺️Mark my answer as BRAINLIEST ☺️

    0
    2021-09-13T14:58:33+00:00

    Step-by-step explanation:

    In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. Transversals play a role in establishing whether two other lines in the Euclidean plane are parallel. The intersections of a transversal with two lines create various types of pairs of angles: consecutive interior angles, corresponding angles, and alternate angles. As a consequence of Euclid’s parallel postulate, if the two lines are parallel, consecutive interior angles are supplementary, corresponding angles are equal, and alternate angles are equal.

Leave an answer

Browse
Browse

18:9+8+9*3-7:3-1*13 = ? ( )